
Deep QA models for SQUAD

Divyendra M
Computer Science Department

University of Massachusetts Amherst
dmikkilineni@umass.edu

Gadde Venkata Sai Kumar
Computer Science Department

University of Massachusetts Amherst
gvenkatasaik@umass.edu

Abstract

This document contains the final report for the Neural
Networks project. We study the challenge of closed-domain
question answering and build neural models with a focus
on answering questions in SQUAD dataset. We start with
basic forms of confining question and the context onto a
single hidden state representation and later, realizing their
poor performances due to information bottlenecks, imple-
ment a model with timestep outputs and attention mecha-
nisms, BIDAF to achieve massive accuracy gains. We anal-
yse the statistics of the question for which we were predict-
ing successfully and not.

1. Introduction
In this project, we explore the challenges of building a

QA model by implementing vanilla sequence neural models
and compare them with models with more information flow
and attention mechanism.

A typical reading comprehension task involves reading
the question at hand, analyze the corresponding comprehen-
sion paragraph for context and predict an answer sentence
within the context paragraph. And hence this task behoves
the neural models to represent the context and the question
in it’s state space efficiently and make temporal, contextual
dependencies.

Traditional approaches tackling QA chal-
lenges(Especially Factoid QA) are mainly Information
retrieval driven and models based on syntactic matching
approaches. Appreciating the neural models recently
shown ability to encode the semantic properties of the
language, a lot of neural models, techniques have been
proposed to tackle the QA domain. Inspired by this work,
we first approach the problem using a vanilla state encoding
neural models to compress the question context in a single
representation. With this model performing poorly, we
move ahead to implement RNN sequence models with
sequential representations rather than single state represen-
tations, and bidirectional attention between these sequential

representations of question and context as proposed in
BIDAF to achieve high predictive performances.

2. Dataset
For a supervised approach of building the neural QA

model, we woule be in need of large amounts of xamples
in the form of (Question, Context, AnswerSpan), where the
Answer span could be the start end index pointing the an-
swer in the given Context para. We use the recently pub-
lished SQUAD [5] dataset for this purpose

SQUAD dataset consists of 81403 question-answer
pairs, each with a context paragraph. Unlike syntheti-
cally generated datasets like bAbI[[8]],the questions in this
dataset are generated by humans based on Wikipedia arti-
cles. This is more realistic and poses a higher difficulty in
inference capabilities. Below is an example entry from the
dataset:
Question: Why was Tesla returned to Gospic?
Context Paragraph: On 24 March 1879, Tesla was returned
to Gospic under police guard for not having a residence per-
mit. On 17 April 1879, Milutin Tesla died at the age of
60 after contracting an unspecified illness (although some
sources say that he died of a stroke). During that year, Tesla
taught a large class of students in his old school, Higher
Real Gymanasium, in Gospic.
Answer: [15, 19]: not having a residence permit.

3. Evaluation
We use two widely used metrics to evaluate the QA

model:

1. Exact Match: Measures the percentage of predictions
that match one of the ground truth answers exactly.

2. F1 Score: Loosely measures the average overlap be-
tween the prediction and the ground truth answer.

4. Related Work
Initially CNNs[7] were used to model question and con-

text taking advantage of CNN properties to model local

4321



connectivity. This approach came down to scan for sen-
tence similarity using relational information given by match
words between question and answer pairs. But tasks like
Reading Comprehension need more than local connectivity
and model sequential information capturing long term de-
pendencies which CNNs are not structurally well suited for.
Much of the later work favoured using RNNs to model sen-
tences which have the properties of sentence summarization
to fixed vector representation. Another suitability of their
usage is their ability to model variable length sequences.
But practically RNNS had trouble capturing the entire in-
formation in the sentence. So RNNs were augmented using
Attention technique, first introduced by [2], where we try to
capture the important parts of the context paragraph wrt to
the given question. This techniques has seen much use in a
wide array of applications[[2]][[3]].
In this project, we eventually implement a version of Bidi-
rectional Attention Flow[[6]] where the is a two way at-
tention capturing mechanism:from Context to Query; from
Query to Context. The paper’s implementation has achieved
state of the art results in SQUAD dataset

5. Approach
In this section, we detail the QA system and it’s internal

module architectures we implemented. First, we introduce
the required terminology used. Second, we brief about our
initial ’single state summarization’ approaches using RNN
architectures. Finally, we describe the multi-output repre-
sentations and attention mechanism we eventually adopted
as stated in BIDAF paper[[6]]

5.1. Terminology

From a bird’s eye point of view, our system consists of
three modules: Question Module; Context Module; Answer
Module- the question and context module are independent
modules responsible for representing the given question
’q’ and context ’x’ into embedding representations ’u’ and
’h’ respectively which are given as an input to the answer
module. The answer module with this information tries to
predict scores over which word in the context paragraph
could be a start index and end index. So the answer module
would have two prediction scores as an output:one for
the start index, other for end index. This can be seen in
Figure:[1]

The given question and answer are represented as
a sequence of words: Question ’q’ of length ’J’,
q = q1, q2, .., qJ and Context ’x’ of length ’T’, x =
x1, x2, .., xT . Each of the word in ’q’ and ’x’ is in turn a
semantic vector representation in itself for which we have
used the GLOVE[[4]] 100-sized vectors. The overall model
tries to map these inputs q, x to output a span- f : (q, x)− >
(start, end) such that x1 < start < end < xT . However,

this function mapping is implemented by the following two
different approaches.

5.2. Summarization Approach

RNNs are known to represent/summarize a entire sen-
tence into a single hidden embedding representation. With
the same motivation, we have implemented our question
and answer modules to summarize given question ’q’ and
input ’x’ into single state vector representations of equal
sizes-’d’.
We have tried three different RNN encoding procedures:

• Vanilla RNN

• LSTM

• Bidirectional LSTM.

While the first two cell representations encode only left to
right temporal relations, the third variants outputs two rep-
resentations, one for Left-Right relations, other for Right-
Left relations, both of which are concatenated to give state
representation of size ’2d’. For question module it would
be:
QuestionModule : (q1, q2, .., qJ)− > (u1, u2)− > (u :
2d)
The Context Module encodes its the context conditioned on
the question’s embedding representation. Intuitively it en-
codes both of the question and state into a single vector out-
put representation
ContextModule : (x1, x2, .., xT ;u)− > (h)
The Answer module is a fully connected regressor which
projects its inputs representations u, h into two different
scores which are softmaxed to give two vectors of predic-
tion over start index and end index. Obviously, each of the
prediction vectors are of size ’T’, the size of the context:
AnswerModule : (u : 1 ∗ d, h : 1 ∗ d)− > (s : 1 ∗ T, e :
1 ∗ T )
Figure-1 gives the pictorial representation of our entire ini-
tial setup of using trying to predict the span using single
state summarization approach

5.3. Bi-Directional Attention Model

Our initial setup of summarization performed poorly as
mentioned in Table [1]. We surmise it is because of the in-
formational bottleneck present in these summarization ap-
proaches and the additional gradient flow problems in such
large sequence single-path networks. Many neural archi-
tectures like Residual nets, Dense nets have been proposed
to achieve multiple ambits of information flow and gradi-
ent passages. With a similar motivation, RNNs are mod-
eled to have sequential representations allowing each word
to represent it’s information as an output embedding. This
is contradiction to our initial approach of summarization.
So the RNN processing the input passes along information

4322



Figure 1: Initial setup using Summarization into a single vector representation and using a FullyConnected Regressor on it

about each word it sees which is given as an input to an At-
tention module which passes assigns weights to each word
embedding and gives this input to the Answer module. The
Answer module is another RNN model which takes the at-
tention weighted answer embeddings at each timestep and
predicts the start and end span indices. This Answer module
is different from our initial setup where it was Fully con-
nected regressor.

5.3.1 Question and Answer Module

The original BIDAF model used a hierarchical input rep-
resentation where there are three levels of input represen-
tations:Character level, Word level, Contextual level. We
just confine our model to take the word embeddings of each
word as an input to allow the Bi-LSTM to represent that in-
put word as corresponding output vector of size (1*2d).
QuestionModule : (q1, q2, .., qT )− > (u1, u2, .., uJ)
ContextModule : (x1, x2, .., xT )− > (h1, h2, .., hT )
Each of these outputs can be considered as contextual em-
beddings of the words where the word is represented in a ’d’
dimensional with respect to the surrounding context words.

5.3.2 Attention Module

This is an additional module we introduce as done in
BIDAF model. This module couples the query and context
input embedding vectors and produces a set of query-aware
feature embeddings for each word in the context. It con-
structs two kinds of attention(bi-directional):

• Context to Query attention
Signifies important query information for every word

in the context

• Query to Context attention
Signifies the context information have the closest sim-
ilarity to the entire query vector

We first construct a similarity matrix ’S’(T, J) which embod-
ies the similarity between every question word and context
word. It is a simple dotproduct distance measure. From
’S’ we will do a softmax across ’J’(all query words) to get
the weights with which we do a weighted average of the
question vectors for each word step xt of context. This
weighted attention query for each context word is repre-
sented as Ũ(2d, T ). This would be the Context to Query
Attention matrix. Ũ = (Softmax(S).H)
On the other hand, for constructing Query to Context At-
tention matrix,H̃(2d, T ), we first construct a h̃(1, 2d) =
Σtbt.H:t where b constitutes attention weights for each con-
text word: b = Softmax(Maxcol(S)). To use this same
attention weighted context vector across all timesteps, we
tile h̃ ’T’ times to get our H̃ .
Now as suggested in the BIDAF model we will con-
cat vectors of both these attention matrices along with
context outputs from the Context module to give the
Attention module’s final output A:(T, 8d). At =

[ht

⊕
ũt

⊕
(h

⊙
ũ)

⊕
(h

⊙
h̃)] where

⊕⊙
refer to vec-

tor concatenation and Hadamard product respectively. This
’A’ is sent as an input to out Answer Module.

5.3.3 Answer Module

The answer module is a bi-directional LSTM which tries to
model that bi-directional attention weighted context embed-

4323



Figure 2: BIDAF architecture with only contextual embed-
ding input representation.(Adopted from[[6]]

dings and emit outputs for each of this word. These ouputs
are then projected and softmaxed to give probabilities for
the start index and end index.

6. Experiments
As explained above initially we implemented a RNN

based summarization method.

We used a Vanilla RNN cell as a start. Considering
their fair known problems with exploding and vanishing
gradients, we have used gradient clipping technique with a
max grad norm of ’10’.
But even then this cells are known to have long term
dependency problems, then we experimented with GRU
cells which is capable of learning long term dependencies
and gradient flows. We preferred GRUs over LSTMS
considering that former involve less computation and are
easy to train..
Then, we updated our summarization model to use Bi-
LSTM cells to model dependencies in both directions. This
increased our hidden state representation from ’d’ to ’2d’.
We have used multiple hidden state representations [24, 64,
512] and cell types but none of the above summarization
techniques performed even marginally well as shown in
the results(Table.1). We opine the reasons of its poor
performance in the Approach section.

The below techniques are some of them which we em-
ployed for both our Summarization approach and BIDAF
approach:

Figure 3: F1 score

1. Since both start index probabilty distribution and end
index distributions are considered independent here,
there were many cases where we chose an maximum
end index after the start index position. Hard program-
ming in the answer module to eliminate such choices
improved out EM scores by a factor of ’1’.

2. All the out of vocabulary words not found in the
GLOVE library are initialized with random vectors as
done usually in practice

3. The questions have an average length of 20 words and
the context paragraph have average length 500. So we
zero-padded all the question and context sentences to
20 and 500 respectively. But to avoid additional RNN
cell computations for these zero padded words, we
have used DynamicRNNs feature in Tensorflow which
simply does an Identity operation for these padded
lengths. This is more for correctness sake than for
computational efficiency.

We then implemented out BIDAF model as explained in the
Approach section by introducing an extra additional mod-
ule. Below are the model parameters we settled for:

1. learninng rate: 0.0005

2. Dropout: 0.3

3. Epochs: 7

The results and significant accuracy boost using this model
can be seen in Table [1].

Avoid Over-fitting As can be observed above, the model
has generalized well when the dropout is used.

4324



Table 1: Results for the different models

S.No Method F1Score EM
1. Baseline 11.704 4
2. Baseline(GRU) 17.102 6
3. Baseline(Bidir LSTM) 19.207 6
4. Attention Model 72.72 60
5. Attention Model (Dropout=0.3) 69.66 56
6. R-Net (State of the art) 88.126 82

Figure 4: F1 score with dropout = 0.3

Figure 5: Exact Match with dropout = 0

7. Conclusion

The SQUAD dataset is a very complex dataset, as it in-
volved lot of feature engineering and hand tweaking of dif-
ferent parameters. We found that the model is not robust
to small changes in the architectures like removing the fi-
nal LSTM layer or some operations in the attention layer.
We would like to extend this project to include dependency
parsing for the model in order to decrease the accuracy.

7.1. References

List and number all bibliographical references in 9-point
Times, single-spaced, at the end of your paper. When ref-

Figure 6: Exact match with dropout = 0.3

erenced in the text, enclose the citation number in square
brackets, for example [1]. Where appropriate, include the
name(s) of editors of referenced books.

References
[1] Authors. The frobnicatable foo filter, 2014. Face and

Gesture submission ID 324. Supplied as additional material
fg324.pdf.

[2] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine trans-
lation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473, 2014.

[3] W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals. Listen, attend
and spell. arXiv preprint arXiv:1508.01211, 2015.

[4] J. Pennington, R. Socher, and C. Manning. Glove: Global vec-
tors for word representation. In Proceedings of the 2014 con-
ference on empirical methods in natural language processing
(EMNLP), pages 1532–1543, 2014.

[5] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. Squad:
100,000+ questions for machine comprehension of text. arXiv
preprint arXiv:1606.05250, 2016.

[6] M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi. Bidi-
rectional attention flow for machine comprehension. arXiv
preprint arXiv:1611.01603, 2016.

[7] A. Severyn and A. Moschitti. Modeling relational information
in question-answer pairs with convolutional neural networks.
arXiv preprint arXiv:1604.01178, 2016.

[8] J. Weston, A. Bordes, S. Chopra, A. M. Rush, B. van
Merriënboer, A. Joulin, and T. Mikolov. Towards ai-complete

4325



question answering: A set of prerequisite toy tasks. arXiv
preprint arXiv:1502.05698, 2015.

4326


